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All solids with given mechanical properties will fracture brittly when of large enough size; vice 
versa it is difficult to comminute solids below certain sizes. Both effects are caused by the 
fracture stress changing with size (according to cube/square scaling principles) whereas the 
flow stress is essentially independent of size. Again, a fixed size of body, made of different 
materials, can respond in quite different ways: simple elasticity, elastic fracture, elastoplastic 
flow, elastoplastic fracture, plastic flow, plastic fracture or plastic collapse are all possible, 
depending upon the different mechanical properties of the different materials from which it 
may be made. This review shows that such deformation transitions are controlled by the 
relative values of size and a material parameter given by ER/r where E is Young's modulus, R 
the specific work of fracture and o-y the flow stress. At fixed size of body, made of given 
material, transitions occur when one or more of the mechanical property terms are altered by 
rate, temperature, environment, superimposed hydrostatic stress and so on. A wide range of 
examples is used to illustrate these effects, and their role in load-bounding methods in 
elastoplastic design of structures is considered. 

1. Perce ived w i s d o m  on f r a c t u r e  and 
t rans i t ions  

Common experience tells us that under similar con- 
ditions of loading, different materials deform and 
break in different ways. At the one extreme ice, glass, 
blackboard chalk, bone, cello-strings, rubber bands 
and the like break suddenly without warning; and 
some materials will shatter into many pieces. At the 
other extreme soft metal wires, lead sheet, pitch, chew- 
ing gum, polyethylene film, and so on, first experience 
plastic yielding or visco-elastic flow, which produces 
extensive deformation before eventual f r a c t u r e -  
and sometimes fracture is difficult to achieve in 
materials such as modelling clay. In between these 
extremes are materials such as some cold-worked 
metals and several rubber-modified polymers which, 
under similar conditions of  loading, suffer a limited 
amount  of permanent deformation before fracture. 

On the basis of this common experience, it is 
customary to classify the behaviour of materials at 
room temperature broadly into two types of  fracture, 
namely brittle and ductile, the distinguishing feature 
between which is whether the broken parts may be 
refitted together to regain essentially the original 
dimensions. Archaeologists can reconstruct ancient 
vases from pottery shards because the fracture was 
brittle, but it is impossible to refit together the 
portions of an opened beer or sardine can unless the 
wound-up bit is plastically uncurled. 

When conditions change, the same size piece of  
material may behave differently, depending on how 
the relative resistance to fracture and flow change. For  
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example, increase in temperature usually softens 
materials, so that flow takes over from fracture (con- 
sider the well-known brittle-ductile transitions in 
Charpy tests on b c c and some h c p metals; the manu- 
facture of glass bottles and the drawing of glass fibres 
at high temperatures compared with the brittle 
behaviour of  glass at room temperature - or the 
extensive hot-stamping industry based on the hot 
ductility of  fl-brasses which at room temperature are 
comparatively brittle). Increase of temperature which 
removes moisture, on the other hand, promotes brittle- 
ness (consider wet and dry mud, wet and dry wood). 
Increases in the rate of deformation usually promote 
brittle behaviour in a given material (consider pitch 
which flows at low stresses over long periods of  time, 
but which may be snapped brittly when stressed in 
short times, and also "silly putty"). Changes in 
environment may promote either brittleness (consider 
hydrogen embrittlement in steels and liquid-metal 
embrittlement in steels and aluminium) or flow (con- 
sider the Joff6 effect [1]) and a given material may be 
affected in different ways by different environments 
(high impact polystyrene is made brittle by sunlight, 
but its threshold resistance to fatigue cracking is 
increased by soaking in alcohols). 

Changes in microstructure of materials with similar 
compositions can also be important. In metals, for 
example, coarse-grained zinc is brittle at room tem- 
perature whereas fine-grained zinc can be deformed to 
90% reauction of area in a tensile test. This comes 
about because small grains produce small glide bands 
and hence slip-induced microcracks of short length in 
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comparison with those produced in large grains; as 
explained later, shorter cracks require higher stresses 
to cause fracture, and in the case of zinc of adequately 
small grain size, since the fracture stress in a laboratory 
tensile specimen exceeds the yield stress, flow will 
precede fracture. High-temperature creep-resisting 
alloys, which typically possess large grain diameters so 
as to avoid a lot of grain-boundary sliding, are not 
particularly tough at room temperature unless special 
alloying additions are used. The effects of ageing 
and irradiation on metallic microstructure cause 
embrittlement. 

Some alloying elements tend to promote ductile 
behaviour, either because of  their effect on gross 
microstructural features, or their effect on the metallic 
lattice. For those microstructural variables that are 
well understood in crystalline solids, the one common 
factor in increasing ductility appears to be the 
suppresion of void formation and growth of micro- 
cracks. The "cleanliness" of the microstructure of 
commercial alloys (inclusion content and its geometric 
distribution and shape) is vital in this context. For 
example, less than 0.01% bismuth has a potent effect 
on the ductility of copper, and the effect of the geo- 
metric shape and distribution of second phases on 
ductility is strikingly displayed between flake and 
spheroidal cast irons. Manganese is a desirable alloy- 
ing element in steels containing sulphur since MnS 
inclusions are relatively harmless, unlike FeS which 
encourages grain-boundary brittleness. 

Fracture in "damage-free" glass (i.e. glass in which 
best attempts have been made to remove the surface 
microcracks from which normal fractures start) is also 
affected by micro-inclusions. For example, NiS 
changes its crystal structure at 300~ giving an 
increase in volume, so that some glass failures have 

been attributed to residual stresses around NiS 
inclusions. (Heavy metal sulphides are among the few 
minerals insoluble in soda-lime glass and not wetted 
by it.) 

A major factor controlling the occurrence of fracture 
or flow is the state of stress, an indicator of which is 
the hydrostatic or mean stress a n = (0"  1 "[- 0" 2 -t- 0"3)/3 
where 0-1 etc., are principal stresses. It is well-known 
that compressive a H encourages plastic flow rather than 
brittle fractures in rocks (von Ka~m~in) and zinc 
(B6ker) (see Nadai [2]) which may explain the tortuous 
flow of otherwise brittle rocks in the Earth's crust. 
"Brittle" metals may be plastically formed success- 
fully by means of  hydrostatic extrusion where the 
billet is surrounded by fluid under high pressure in the 
container, and extruded into fluids which themselves 
are under pressure. The effect of residual or manu- 
facturing stresses can also be thought of in terms of 
the sign and magnitude of au. Residual tensile stresses 
significantly affect stress-corrosion cracking, and 
residual compressive stresses deliberately introduced 
into the surface of machine parts (by, for example, 
shot-peening) inhibit fatigue crack initiation and' 
propagation. 

Hydrostatic compression exists under many 
indenter geometries so, owing to its suppressive effect 
on crack formation, plastic flow can often be 
produced in hardness tests on materials which would 
fracture brittly in tension. Added to that, change in 
indenter shape can itself produce transitions in 
deformation. The role of indenter geometry is high- 
lighted when sideways tractions are introduced as in 
abrasive machining. It is found that the cross-sectional 
area of the groove formed as an abrasive particle slides 
on the surface of a ductile metal shows a transition 
with orientation and geometry of the scratching tool. 
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Figure 1 (a) Cutting and ploughing observed in abrasive machining (reproduced from Samuels [3], with permission) and (b) transition 
between chipping and no chipping in abrasive machining (after Sedricks and Mulhearn [4]). 
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Figure 2 (a) Fracture stress as a function of pressure for notched samples of Rigidex 50 tested in Igepal solution at 293 K and a strain rate 
of 9.4 • 10 4sec i and (b) fracture and yield stresses as a function of strain rate, temperature and pressure for Rigidex 50 tested in Igepal 

solution (both reproduced from Truss et al. [6] with permission). 

For given frictional conditions and load, there is a 
critical "attack angle" for the tool below which a chip 
or ribbon fails to be cut; instead a prow of material is 
formed ahead of the tool which is moved into side 
ridges alongside the groove as the tool "rubs along" 
(Fig. l a). The attack angle, /~, is measured from the 
horizontal and corresponds with/7 = (90 + ~) where 

is the tool rake angle as conventionally defined from 
the vertical. The critical attack angles for a range of  
metals being scratched with pyramidal tools are 
roughly as follows: copper, 45~ a-brass 55~ lead, 60~ 
nickel, 70~ aluminium, 85 ~ At larger attack angles, 
when ribbons of material are machined away, the size 
of groove increases rapidly and eventually seizure 
occurs as the tool "digs-in" (Fig. l b). Other things 
being equal, ribbons are formed when scratching with 
pointed indenters in facet-first orientation, but in 
edge-first orientation a piled-up groove is produced 
[5]. There is another type of  transition in this sort of 
situation which concerns whether a ribbon is cut or 
whether fragmentation of the workpiece in the track 
of the tool occurs (i.e. "lumps are knocked out"). 

Polyethylene usually behaves in a ductile fashion, 
but Ward and co-workers (e.g. [6]) have shown that 
the pressure dependence of the fracture stress of 
"Rigidex 50" (a high-density hem�9  manu- 
factured by BP Chemicals Ltd,) is significantly lower 
than the pressure dependence of its yield stress. Thus 
with the application of sufficiently high hydrostatic 
pressure, the yield stress may be made higher than the 
fracture stress and brittle behaviour results (Fig. 2a). 
Again in this material, transitions can be produced by 
changing the strain-rate,  since the strain-rate depen- 
dence of  the fracture is less than that of  the yield stress 
(particularly at high strain rates, high pressures or low 
temperatures, Fig. 2b). Similar behaviour is known in 
poly(methylmethacrylate) (PMMA) and poly- 
carbonate (PC) [7, 8], and parallels those studies in 
which strain-to-fracture has been noted to decrease 
with increasing pressure [9, 10]. It should be noted that 
in some of  Ward et al.'s experiments, brittle failure of  

polyethylene could only be induced by notching the 
samples and subjecting them to an agressive environ- 
ment under pressure (the Igepal solution mentioned in 
the caption to Figs. 2a and b is the environment 
recommended by the American Society for Testing 
and Materials (ASTM) for standard tests on the 
susceptibility of  polyethylenes to environmental stress 
cracking). It would appear, therefore, that one effect 
of  hydrostatic pressure is to reduce the time scale 
within which environmental stress cracking is 
observed. 

The most well-known, and perhaps most studied, 
deformation transition concerns changes in Charpy or 
|zod impact energy of steels with temperature. Over 
similar narrow temperature ranges, marked changes 
also occur in % reduction of area and % elongation in 
other b c c and some h c p metals and some polymers 
[11]. Fig. 3a shows how change of temperature 
produces transition in another type of test; namely, 
when balls of  various sizes are indented to a depth of 
one radius in blocks of  PMMA. The percentage of  
uncracked indentations is plotted against tem- 
perature. Fig. 3b shows similar transitions produced 
by environmental effects. The critical radius at which 
at least one radial fracture was observed changes with 
solvent solubility parameter 6s when the surface being 
indented is flooded with solvent. 

A different environmentally induced transition is 
the steaming of wood in order to bend it without 
splitting. Water has a powerful influence on the 
properties of  biological materials: a soggy biscuit is an 
example of a deformation transition from the crisp dry 
state, and loss of turgor pressure in plants causes them 
to wilt and become flaccid. 

Notches encourage brittle fracture owing to 
increased tensile aH near the root of the notch; thus 
Charpy and Izod notched impact tests arguably 
measure the resistance to fracture under high tensile 
all, as well as some high strain-rate "impact strength". 
In thick structural sections, the constraint of the 
surrounding material promotes high tensile mean 
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Figure 3 (a) Upper transitions between elastoplastic flow and elastoplastic fracture caused by change of  temperature in identation tests on 
PMMA. O WC balls of  radius 0.5 mm and steel ball of  radius 1.6 mm (Puttick et al. [51]. (b) Critical radius of the indentation plastic zone 
separating flow and fracture beneath a ball in P M M A  as a function of solubility parameter of  liquid environment (courtesy M. Omar). 

stresses in the internal centre regions of the body 
which thereby have a lower resistance to fracture than 
thin pieces of the same material. A different, but 
related, method of changing constraint is exhibited 
when sandwiches of brittle and ductile components 
are made. It is possible to suppress yielding and 

Figure 4 Tensile testpieces of  polyethylene, the left coated with 
epoxy, the right uncoated. The coated specimen broke brittly, the 
natural specimen flowed plastically and drew down (courtesy 
R. Dakin). 

produce brittle fracture in ductile materials in this way 
(Fig. 4) and, knowing the appropriate mechanics to 
apply, is a useful method for the determination of  
elastic fracture properties in laboratory-sized 
testpieces. 

Transitions with change of size are familiar in frac- 
ture toughness testing where there are limitations on 
the minimum sizes of  testpieces in order to inhibit 
yielding. A transition between elastic and elastoplastic 
fracture is found in a quality control test for spot 
welds. A cruciform testpiece formed by spot welding 
two strips is pulled apart normal to the sheet thickness 
and depending on the relative size of weld diameter and 
sheet thickness, failure occurs either by cracking across 
the weld junction at lower loads or by pulling out a plug 
of (ductile) metal in shear at higher loads. Interfacial 
fracture occurs at small weld diameter-to-sheet thick- 
ness (d/B) ratios, and vice versa for plug formation 
(Fig. 5). In a similar vein, Kendall [12] has demon- 
strated the impossibility ofcomminuting small particles 
by compression since, when the deformation zone is 
small enough, even the most brittle solid will flow. 

Our consideration of transitions has been qualitat- 
ive so far. But is it possible to be quantitative and 
describe events in terms of material and geometric 
parameters? When some people say that glass 
"cannot"  be turned in a lathe because it is too 
"brittle", what is meant by that? Why in the machin- 
ing of steel do we not see the sort of brittle "splitting" 
displayed in the fracture of large structures made from 
the same material; why, indeed, do we find respectable 
% reductions in area when small testpieces are taken 
from such large structures? What thickness of a ductile 
polymer needs to be embrittled by ultraviolet radiation 
so that the sandwich as a whole will snap and not flow? 
And so on. 

The following sections explore the mechanics of  
deformation transitions. Not  only do we attempt to 
identify the conditions at the boundaries of the 
transitions between modes of deformation, but we 
also investigate whether there is a progressive change 
in "degree of deformation" within one mode. That  is, 
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Figure 5 Fracture transitions in spot weld cruciform tests (after 
Smith [48]). 

when fracture is preceded by extensive flow because 
the size of specimens is too small to permit elastic 
fracture from the outset, for example, in what way 
does the amount of  plastic flow before fracture depend 
on the size of  the cracked body? 

Again, although most discussion in this review 
relates to monotonic loading, size effects within one 
mode of deformation are well-documented in high 
cycle fatigue (see, for example, Heywood [13]). The 
applied stress (however defined) required to fracture a 
specimen depends on its size, so that the absolute level 
of stress at a given lifetime, or the life at constant 
stress, are functions of some linear dimension. This 
statement applies particularly to inhomogenous stress 

c r 

0 Ef2 Efl 
(a) 

fields as in the bending of plain test pieces or any 
loading of notched bars. Until recently, these effects 
have not had adequate explanation (statistical 
arguments regarding the distribution of flaw sizes in 
common ductile engineering metals are not convinc- 
ing) and the role of crack propagation rates to total 
fatigue life and/or strength has now been investigated 
[14]. 

Some elementary mechanics behind changes in frac- 
ture stress with size, in both monotonic and fatigue 
loading, are explored in the next section. If fracture 
stresses change with size, circumstances arise in which 
changes in mode of deformation can occur. An under- 
standing of these mechanics will help us in a 
quantitative assessment of  that particular cause of 
deformation transition: consideration of  quantitative 
assessment of  transitions caused by other effects (tem- 
perature, rate, constraint to flow, environment, etc.) 
follows after that. 

2. Scale effects 
2.1. Monotonic elastic fracture 
Ludwik in 1909 [15] described the role of changing 
stress states in terms of raising or lowering the stress- 
strain curve relative to a "fracture stress" curve 
characteristic of the material, as shown schematically 
in Fig. 6a. Increase of  strain rate, increase of o-H 
(notches and/or thick sections), or decrease of  tem- 
perature tend to raise the a e curve as shown thus 
giving smaller strains to fracture (points A . . .  D 
where the a-e curve intersects the fracture curve). 
Notch-brittleness may be explained if the characteristic 
fracture stress, o-r, is approximately constant with tem- 
perature (Fig. 6b) and the variations of  uniaxial yield 
stress (O-y) and fully constrained uniaxial yield stress 

Figure 6 (a) Ludwik's early idea of a "fracture stress" curve which 
was supposed to be a material property, (b) Orowan's classification 
(based upon a material-property fracture stress curve) of  solids into 
"simply brittle," "'notch-brittle" and "simply ductile," (c) size (or 
scale) effect in the mechanics of fracture. The stress to cause crack- 
ing often falls with increase in size of the cracked body (it depends 
on the geometry, scaling and method of  loading and is the result of 
cube/square scaling). The stress to cause plastic flow, on the other 
hand, is usually considered to be independent of  size. Hence large 
structures, made of  materials which behave in a ductile fashion in 
the laboratory, can fracture in a brittle fashion if they are large 
enough. Vice-versa it is difficult to comminute powders below 
certain sizes, owing to flow supervening fracture in small sizes. 
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(3ay in the presence of deep notches) are plotted on the 
same diagram. Materials are simply ductile at high 
temperatures where ar > 3Oy; at low temperatures 
where ar < ay the material is simply brittle; when 
ar < 3ay, Orowan [16] called the material notch- 
brittle, i.e. ductile in plain tensile tests but brittle in 
notched tests having large plastic constraint. As 
shown later, the idea of a single "fracture stress 
curve", which is representative of the material is not 
correct and although Figs. 6a and b are useful concep- 
tually, they are wrong in general. 

It is not always appreciated that in the mechanics of 
fracture, unlike the mechanics of plastic flow, there is 
a scale effect whereby the stress to cause fracture in a 
large body may be smaller than the stress to cause 
fracture in a similar, but smaller, body. This follows 
from the basic formulae for cracking stresses of the 
sort: K~ = E R  = aZ(na)Y  z, where Ko is the critical 
stress intensity factor, E is Young's modulus, R the 
specific work of fracture, ar the fracture stress, a the 
flaw size, and Y the shape factor for the particular 
cracked geometry in question. For two geometrically 
similar bodies with identical microstructures and 
mechanical properties, afa 1/2 = ~rr(a/D)l/Z D 1/2, where 
D is size, is constant at fracture, so [17-19] 

O'f(large) = O'f(srnall)/~ I/2 (1) 

where 2 is the scaling factor. Of course, not all 
"prototype" structures and components are geo- 
metrically similar versions of laboratory "models": it 
is possible to test ship's plate in full thickness in the 
laboratory but impossible to duplicate the extent of 
the hull; annular sections of pipelines may be tested in 
the laboratory but there is a limit to the length, and so 
on. The scaling laws for non-proportionately scaled 
elastic structures have been derived [20] where there 
are four separate scaling factors for height, width, 
thickness and crack length. The details need not con- 
cern us here but we note that, usually, fracture stresses 
in the prototype are smaller than fracture stresses in 
the model. The physics behind this conclusion relates 
to cube/square scaling: the energy available to feed the 
crack goes up as the volume increases but the energy 
required for fracture increases only as crack area 
increases. Puttick [21] has drawn the analogy with 
critical sizes of nuclei in thermodynamic nucleation 
theory, and cube/square scaling enabled Brunel to 
design the "Great  Western" large enough to cross the 
Atlantic and have coal to spare. 

The consequence of the scale effect in elastic frac- 
ture is that in large bodies the fracture stress may be 
brought down below the safety-factored yield stress 
on which traditional strength-of-materials design is 
based and the structure will unexpectedly break in a 
brittle fashion even though small samples taken from 
the same body will be ductile in the laboratory. Fig. 6c 
illustrates this effect. There is thus a mechanics 
explanation for the "brittle fracture story" which 
applies irrespective of any changes in micromode of 
fracture. Indeed it is true to say that the fracture of 
Vierendeel bridges, welded ships and so on (which gave 
birth to the modern discipline of fracture mechanics) 
could have been explained at the time in terms of the 
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Griffith theory [22, 23]. What was not understood was 
that Griffith's analysis and experiments on glass could 
be applied to all globally elastic fractures, i.e. fractures 
in which all irreversibilities are in a boundary layer 
contiguous with the crack faces. Such fractures are (at 
least in engineering terms) "reversible" and, of course, 
a number of ships were repaired by welding them back 
up. 

Irwin in 1954 [24] recognized that explanations of 
size effects prior to that time neglected the influences 
of elastic energy in the cracked bodies: he remarked 
that, 

" . . .  disregarding size effects due to changes in 
materials properties with size caused by problems of 
metallurgical processing, previous studies have shown 
that fracture size effects of significant magnitude exist 
in solids whether they are brittle or ductile and whether 
the material is a metal or a plastic. The most elaborate 
precautions to eliminate differences due to material 
quality, lack of precise similarity of dimensional 
ratios, specimen surface preparation, and the exper- 
imental loading devices have failed to remove fracture 
size effects. It is apparent that these are fundamental 
to the nature of the severing process . . . .  " 

The particular symposium, at which he spoke, was 
concerned with low-temperature effects but he 
cautioned that reduced ductility with temperature was 
not the sole reason for brittle fracture in large struc- 
tures, and thereby undermined the usual "metallur- 
gical" explanation for this sort of thing. Of course, if 
the resistance to fracture does fall for some reason, 
fracture stresses will be diminished even more. But it 
is important to be aware that even without such 
changes in toughness, brittle fracture can occur in 
large bodies made of materials behaving ductilely in the 
laboratory. 

2.2. Elastoplastic fracture 
Early reports [25-27] of experiments on geometrically 
similar notched three-point bend bars of ductile 
metals demonstrated that (i) the extent of plastic flow 
before cracking is smaller in larger testpieces, and (ii) 
the relative amount of total work done after peak load 
is smaller in larger testpieces. Figs. 7a and b show 
similar results taken from Shearin et al. [28] for three- 
point bending and Hagiawara et al. [29] for notched 
and un-notched scaled I-beams. Clearly, larger test- 
pieces fracture earlier than smaller, which accords 
with general ideas on size-effects described in Section 
2.1, namely that bodies which are "large enough" may 
fracture in a brittle (globally elastic) fashion, even 
though small bodies of the same material may undergo 
extensive plastic flow before fracture. Also, as shown 
in this figure, no bodies fail in a truly elastic fashion 
(i.e. in the early linear reversible portion of the curves), 
but we make the important observation that there is a 
continuing scale-effect within the elastoplastic fracture 
range, and that larger bodies undergo less elasto- 
plastic flow before final fracture than scaled smaller 
bodies. 

It is clear from Figs. 7a and b that until the final load 
drop, data from all sizes of cracked body follow the 
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Figure 7 (a) Elastoplastic fracture of geometrically similar 3-point bend testpieces of low carbon steel (Shearin et al. [28]) and (b) elastoplastic 
fracture of geometrically similar notched and un-notched I-beams (Hagiawara et al. [29]). 

same master curve. The master curve is the effective 
stress-effective strain, 6 ~, curve for elastoplastic 
flow for the material. That all the results follow the 
same master curve (within the limits of experimental 
measurement and material reproducibility) is another 
way of saying that there is no scale-effect in simple 
plastic flow. 

It is explained in Shearin et al. [28] that cracks begin 
to grow before the final drop in load. Consequently, 
the different normalized displacements at final frac- 
ture in specimens of different sizes are connected with 
crack instabilities in elastoplastic fracture in those 
different testpieces rather than crack initiation. 
Indeed, application of a critical J-integral value, Jc, or 
critical plastic work/volume criterion of crack 
initiation in a rigid-plastic body would predict 
approximately the same normalized displacement at 
fracture, independent of size, since the area under a 
a-e  curve is the plastic work/volume. Elastoplastic 
crack instabilities are not within the scope of this 
review and the interested reader is referred to Atkins 
and Mai [19]. The field (particularly with regard to 
quantitative assessment) is comparatively unexplored 
and is the subject of current research. For present 
purposes we note that inspection of crack growth 
resistance (JR)-based finite element procedures for 
elastoplastic crack instabilities seems to indicate a size 
effect along the lines indicated in Figs. 7a and b, 
although size effects per se were not being looked for 
in that work. 

2.3. Fatigue fracture 
It has recently been pointed out that any fatigue crack 
growth law which incorporates the stress intensity 
factor (such as the Paris power law equation for Stage 
II growth) must exhibit a scale effect [14, 19]. In 
geometrically similar bodies, for example, it may be 
shown that crack growth rates, da/dN, are faster in the 
larger body at the same relative position in the path of 
fracture (same a/D where D is the width of the body). 
What effect that has on the number of cycles to failure 
as between large and small bodies depends on the 
starting and final flaw sizes. That is, ( d a / d N ) l a r g  e > 

(da/dN)~mall but cycles to fracture depend on the dis- 
tance the crack has to run. Of course, fatigue lives of 
plain samples relate to initiation as well as propa- 
gation and the initiation phase can take up the major 

portion of fatigue life in high cycle fatigue. Conse- 
quently scaling laws derived from Paris-type growth 
laws can tell only part of the story. In the case of 
welds, however, the analyses are likely to be directly 
applicable since the inherent tiny intrusion defects 
associated with welds act as initiation regions for 
Stage II propagation to occur directly. It is of note 
that Burdekin's finite element calculations for fatigue 
o f  fillet-welded joints [31] show (i) that for a given 
attachment thickness and weld size, increasing the 
main plate thickness gives an increasing tolerance for 
initial defects, but (ii) that when the attachment thick- 
ness and weld size are, scaled up in proportion to the 
main plate thickness, increase in the size of the joint 
leads to a dramatic drop in tolerance for initial defects 
at larger thickness. Calculations can be performed for 
Paris-law fatigue growth in non-proportionately 
scaled bodies [19]. 

3. F l o w  o r  f r a c t u r e ?  
Is it possible to say beforehand how a given solid, of 
given geometry subjected to given applied loads, will 
deform? As far as time-independent deformation is 
concerned, two pairs of questions have to be 
answered: 

1. Is the strain state elastic or plastic? 
2. Is it favourable for cracks to initiate and 

propagate or not? 

The first equation is easily answered by the magnitude 
of the strains induced by the applied loads, Ca. If  they 
are greater than the yield strain, ey, then clearly the 
body has become plastic. Calculations are straight- 
forward if the deformation is uniform (e.g. uniaxial 
tension of an homogeneous isotropic bar, and also 
multiaxial uniform loading using effective stresses and 
strains and the plasticity yield function). For non- 
uniform loading, Sa will be non-uniform and there may 
be mixed regions of elastic fields (e a < Sy), elasto- 
plastic fields (Ca "~ %) or fully plastic fields (ea >> %)" 

The answer to the second question is more difficult 
to tackle and should be sub-divided really depending 
upon whether or not there are pre-existing cracks in 
the body (which of course will produce non-uniform 
deformation fields and affect the answer to question 1). 
It is helpful to consider the ratio of the specific work 
required for cracking, W~, to the energy rate, Wd, in the 
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loaded body which may be released for cracking. In 
elastic fracture in a body already containing a sharp 
crack, Wr is identified with the material fracture 
toughness R; under the same circumstances W, is 
- (0A/c~A)u = J or G the potential energy release rate, 
and W~/W, = RIG in a linear system. In plastic frac- 
ture of metals, W is the specific essential work of 
initiation, Ji, given by -(~UT/~A)u, where U T is the 
total work area beneath a load-displacement plot, or 
by related expressions, and which is linked to micro- 
structures [19]. In this case, W~ is the history-dependent 
~(crH/6)d~ or some version of it, or related 
quantities such as the crack opening displacement 
[19]. Thus, 

1. when e, < ey and W~ > g4 d we have simple 
elastic deformation; 

2. when e, < ey and Wr < W, we have elastic brittle 
fracture; 

3. when e~ > Ey and Wr > W, we have simple 
plastic flow, 

4. when ea > ey and W~ < W~ we have combined 
flow and fracture (i.e. plastic fracture). 

These inequalities are shown schematically in 
Fig. 8. Deformation transitions concern movement 
over the boundaries of the "cross". The well-known 
Charpy transition in steels concerns moving from the 
lower left quadrant to the upper left quadrant. The 
size-effect in brittle fracture concerns moving from the 
lower right quadrant to the lower left quadrant as the 
body increases in size and from the lower right 
quadrant to the upper right quadrant when the body 
becomes small. Vice versa, limiting sizes in commi- 
nution trace the reverse route, i.e. lower right to lower 
left when the particles are large and break down, but 
lower right to upper right when the limiting size has 
been reached. Similar considerations apply for the 
thickness requirement in plane-strain fracture tough- 
ness (K~c) testing. Hydrostatic compression applied to 
brittle rocks causes the deformation to fall in the 
upper left quadrant (or even upper right) in place of 
the usual lower left quadrant. Vice versa, notch brittle- 
ness caused by hydrostatic tension at notch roots in 
otherwise ductile solids occurs in the lower left 
quadrant instead of  the upper right. (Simply brittle 
solids remain in the lower left quadrant, and simply 
ductile solids in the upper right quadrant, and are 
unaffected by the plastic constraint of the notch.) 

E apphed 
~y 

Flow 

t 
1 .0  - -  

No flow 

(racking - ~ No cracking 

Plashc 
fracfure 

Elasftc 
fracture 

Cracking 

Simple Flow 
plasficffy 

Stmple 
elasticity 

No cracking 

No flow 

I'0 

w,./w~ 

Figure 8 Deformation transition regimes. 
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(o) 
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(c) 

Figure 9 Difference between (b) ironing/bulging and (c) negative- 
rake machining processes. 

"Semi-brittle" solids sit on the boundaries of the 
cross. Transitions from normal wire-drawing of a 
ductile metal to the formation of a bulge ahead of  the 
drawing die to the "scalping" of chips from the sur- 
face of the undrawn rod, concern moving to the left 
from the right in the upper part of  the diagram 
(Fig. 9). High-density polyethylene prefers to flow 
in air rather than crack, but in water or other liquid 
environments, elastic fracture occurs (upper right to 
lower left). Ashby deformation-mechanism and 
fracture-mechanism maps for the same solid may be 
viewed together to show transitions from flow to frac- 
ture and vice versa [32]. For example, at a fixed tem- 
perature, the relative values of vertical stress 
intercepts will indicate likely events; alternatively, at 
fixed applied stress, horizontal intercepts will indicate 
transitions with temperature. Since fracture events are 
often controlled by energies, Ashby maps could use- 
fully have a third axis of  strain to give flow and failure 
surfaces. 

Load-displacement,  Xu, diagrams are displace- 
ment reversible in the lower half of Fig. 8 but are 
displacement irreversible in the upper half. In the 
lower !eft quadrant, broken pieces may be refitted to 
regain the original object; in the upper left, refitting 
fails to reproduce the original object owing to exten- 
sive distortion and shape change. 

It would be extremely useful to be able to predict 
quantitatively into which quadrant a given (material, 
geometry, applied loading) combination will finally 
fall (after the initial elastic response which all bodies 
display). With that information it would be possible 
either (a) to avoid moving into an undesirable region 
or (b) to ensure that deformation takes place in a 
favoured region. The material properties which are 
likely to influence the behaviour are the yield strength 
O-y, the Young's modulus, E, and the resistance to 
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Figure lO Elementary DCB testpiece. 

cracking (given by a x~ariety of parameters, depending 
on the circumstances, such as the fracture toughness, 
R, the critical stress intensity factor , /~ (which includes 
E of course), the critical crack opening displacement, 
6~, specific essential work of initiation, J~, etc.). 
Geometrical effects, and differences in applied load- 
ing, are represented by two inter-linked parameters, 
i.e. (i) some characteristic length, which may be the 
length of a pre-existing crack or the size of the body ( in  
elastic fracture mechanics formulae these are connected 
by aiD ratios), together with (ii) a factor related to the 
level of strain in the resulting deformation field. 

For  illustrative purposes, consider a DCB testpiece 
loaded by end forces (Fig. 10). In the elastic quadrant 
of  Fig. 8 the maximum applied stress is located at the 
root of the cantilever and is given by "My/ I  = Xay/ I"  
from bending theory where M -- Xa is the bending 
moment, a is crack length, y is distance from the neutral 
axis and I is second moment of area of the beam 
cross-section. As the ratio ea/~y = O"a/O'y SO long as the 
deformation is elastic, we have 

8a/~y = Xay/Io- (2) 

This defines the horizontal arm of  the cross in Fig. 8. 
The lower part of  the vertical boundary is obtained as 
follows: G = - (c?A/c~A)u = X2a2/EIB so 

W~/W,~ = RIG = REIB/X2a 2 (3) 

The upper part of  the vertical boundary, (for ductile 
fracture by void coalescence and growth for example), 
is defined by 

Wrr/VV~ = D*/f  (an/gr)d~ (4) 

where D* = In (l/2r) the McClintock damage func- 
tion, with l the spacing between voids of  radius r, or 
some other criterion for a different micromechanism 
of plastic fracture [19]. 

Thus, armed with material properties (E, O-y, R, D* 
and so on) and the value of X applied, we may decide 
ab initio the response of  this particular type of  speci- 
men with geometrical details (a, B, h). 

When aa = ~y on the outside of  the beam arms, it 
follows that h = 3ER/a2y = 3 (/Q/o-y)2 since y = h/2, 
I = Bh3/12 and X2a 2 = REIB. For h smaller than 

this, specimens will yield before fracture. We have 
thus identified quantitatively, at least for the double 
cantilever beam (DCB) geometry, the size-related 
transition between elastic fracture and plastic flow. 
The reader may recollect that functions of  ER/~r2y = 
(Kc/o-y) 2 appear in various size restrictions in ASME 
codes for elastic fracture testing [19]. Again the size of 
crack tip zones in elastic fracture depends on Ko/o-y [33]. 

We note that the two separate ratios e,/~y and Wrr/W~ 
seem to be combined into one lumped parameter 
involving ER/cr2y and h. In fact 

ER/o-2yh = (Wrr/ma) (~a/~y) 2 (5) 

The proof  follows from multiplying both sides of 
Equations 2 and 3 i.e. 

( R E I B ~ ( X a y ]  ? 3RE 
Z2a 2 ] k IO-y / - h~r2y (6) 

using I = Bh3/12 andy  = h/2. Values of ER/o-2yh thus 
correspond with areas in Fig. 8. 

While we have determined whether merely plasticity 
or elastic fracture occurs first in this problem, we have 
not explored all possibilities. In particular we have not 
determined whether the initial plastic flow develops to 
only a limited extent before fracture still occurs, or 
whether the plastic flow becomes extensive before 
eventual fracture, or whether plastic collapse occurs 
with no fracture. It may be shown that ifh < E R / ~  = 
(Kc/o-y) 2 a rigid-plastic beam will form a hinge and 
collapse and (in the absence of work hardening) simply 
curl up with no fracture whatsoever. For  3ER/O-2y > 
h > ER/o-2y, the beam will fracture after prior elasto- 
plastic bending. 

In addition, then, to the transition between elastic 
fracture and elastoplastic flow, there is a second 
transition between elastoplastic fracture and plastic 
collapse. In terms of strains, the second transition 
corresponds (in the case of  a perfectly plastic solid) 
with ea/ey = oo. 

Puttick in a series of papers in the late 1970s [34] 
termed the two transitions the lower transition (elastic 
to elastoplastic) and the upper transition (elastoplastic 
to fully plastic). We may write generally 

h ~ o~ER/O-2y (7) 

with different values of c~ for the lower and upper 
transitions. Clearly there are critical lengths or sizes 
(h, D etc.) at which transitions occur in given geo- 
metries, which depend on the product of a material 
factor (ER/O-~) and test geometry factors, ~. 

Calculations of c~ for the lower transition are, in 
principle, readily performed as the critical lengths 
(being those of the elastic strain energy fields) are 
given in linear elastic fracture mechanics by the 
characteristic lengths of the stress fields (i.e. via the 
Y(a/D) factor). For  example, in the case of centre- 
cracked plates it may be shown that c~ = 4 at a = 
D/4, by equating the nett-section stresses at elastic 
cracking (i.e. Kc/[D tan (ira~D)] 1/2) to the yield strength 
ay over the same ligaments. 

Calculations for c~ at the upper transition are less 
reliable as elastoplastic solutions for cracking 
problems are formidable and usually not available. 
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This is so for elastic-perfectly plastic solids and further 
complications are introduced by workhardening. 

In the absence of a proper solution, one approach 
for a at the upper transition is to consider the size of 
the crack tip zone and enquire when it may reach an 
outside boundary of  the cracked body. Consider first 
the size of  the crack tip zones at the lower transition 
in a centre-cracked plate (CCP). For aiD = 0.25 and 
with Kc = ay[D tan (nald)] ~12, the size of the crack tip 
zones is dy = (1/n)(Kc/ay) 2 ~ 0.08D in plane stress and 
about 0.03D in plane strain [33]. The crack tip zone 
size, as a proportion of  the crack length (2a = 0.5D) 
is O.08D/O.5D = 0.16 (plane stress) and some 
O.03D/O.5D = 0.6 (plane strain). While the latter size is 
greater than that recommended for plane strain testing* 
(i.e. ratio ~ 0.02), the zones are still contained within 
the extent of the nett section ligament (0.25D on each 
side of the crack). However, were the extent of the crack 
tip zone to reach an outside boundary of the crack 
body, this would correspond with the upper transition. 
Hence for CCP with a/d = 0.25 and a 0.25D ligament 
between the starter crack tip and the free boundary of 
the specimen, dy equals 0.25D. Thus, we have 

(1/n)(ER/a2y) = 0.25D 

o r  

d < (4/~)(ER/a2,) (8) 

so that for the upper transition, a = (4/~). 
This type of  calculation is crude, as it assumes that 

the crack tip zone is circular when in fact it may be 
lobe-shaped or take the form of a Dugdale-type line 
zone [33], and may also depend on strain rate, the 
form of  the yield criterion and so on. Furthermore, 
and for related reasons, alternative lines of attack (e.g. 
in terms of  loads or stresses) for the upper a do not 
always give the same answer. 

Table I (taken from Atkins and Mai [19]) gives lower 
and upper a values for a number of  different 
geometries. We see from the table that situations with 
compressive major principal stresses (e.g. Hertzian 
indentation) require large critical characteristic sizes 
at the transitions, i.e. large a. The lowest values of a 
are associated with tension stress fields in notched bars 
which experience high an and hence promote fracture. 

In the general workhardening case, it is difficult to 
assign a level for ~a/ey which would give a second 
horizontal line for the upper transition in Fig. 8. 
Sometimes the plastic zone comprises a field of not- 
too-large plastic strains diffused over a wide region, 
but at other times high strains may be concentrated in 
a small volume (cf. shear cutting processes); in both 
cases, however, the total incremental plastic work 
done in the deformation could be comparable with 
each other and with the work of  fracture. Even so, we 
may qualitatively refine Fig. 8 to accommodate both 
the lower and upper fracture transitions, as shown in 
Fig. 11 where the plastic flow, ~a/ey, ordinate is labelled 
"none",  "limited" and "extensive". It may also be 

Fully 

Ptashc 

Fracture 

Elasfoplashc 

Fracture 

Elastic 

Frad'ure 

Full 

Plasticffy 

Elastoplasficity 

Elasticity 

Extenswe FRACTURE - -  None 

Figure  11 Upper, lower and third transitions for fracture and plastic 
flow. 

possible to think in terms of  "limited" and "extensive" 
cracking on the abscissa too. 

We are now in a position to re-examine Ludwik's 
postulate of a size-independent fracture curve for all 
types of specimen of a given material. As a~ = 
ER/YZna, where Y is a constant for a give type of 
specimen, we see that af is not constant for a given 
material, even if inherent flaw sizes are the same in 
different specimens, owing to changes in Y. Likewise, 
the fracture strengths of brittle solids ("moduli of  
rupture" in bend tests) will depend on specimen geo- 
metry and size; equally "compressive fracture 
strengths" of notched or plain specimens (which are 
based on local tensile fractures, as in the Brazilian disc 
test for rocks [36]) will depend on specimen geometry. 
The fundamental parameter in these sorts of measure- 
ment is not fracture stress, but specific work of 
fracture (R). 

Again, susceptibility to notch-brittleness depends 
on the relative values of  ay, (1/Y)(ER/na) 1/2, and 3ay. 
That  is, a simply brittle solid has ER/a2y < YZna, a 
simply ductile material has ER/aZy > 9 Y2na, and a 
notch brittle solid has ER/a2y in between. (1/y2n) and 
(1/9 Y2n) correspond with a for the lower and upper 
transitions, respectively. Knowing the appropriate 
Y2a for a chosen type of  testpiece permits the value of 
ER/a2y for the solid to be bracketted and different types 
of  notched specimen can, in principle, refine the 
answer. This was a useful concept (like U Y S / a y  ratio) 
years ago to quantify "toughness" but these days Kc or 
R is measured independently from standard toughness 
tests and rarely from notch brittleness tests. 

A number of different physical interpretations may 
be put on the ER/a~ or ER/a2yh parameters. In the 
DCB specimen ER/a2yh = (Kc/ay)2/h represents the 

* Experiments show that  measured values of  K c in centre-cracked panels are affected by impending general yield in the ligament (Kenny and 
Campbell [35]. It is recommended that the nett section stress be kept below 0.8ay for displacement-reversible cracking; this reduces the size 
of  the crack tip zones towards recommended values. A limiting size of  zone, as a proportion of  crack length, is an alternative way of setting 

a values for the lower transition. 
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T A B L E  I 

Process 

B a l l  indentation 

Embedded rod 

Unloading indentation cracks (residual 
stress fields) (scratching) 

DCB compression (comminution) 

Centre-cracked plate 

D C B  

Glued Elastoplastic beam 

3-point bending, Charpy 

Deeply edge-notched plate 

Machining (fragmentation-to-curly chip 
formation) 

Guillotining (ductile metals) 

Lower transition elastic-electoplastic 

~ 2 3 0 0  ER/cr~ 
a = radius of Hertz ring crack 
(friction and slip at interface reduces e to 
around 200 for steeI ball) 
also 
a ~ IOOER/a~ 
for yielding directly beneath ball during 
later growth of cone crack. 

d = 8 ER/a~ 

~ 6 ER/o'2y 

d ~ (32/3)ER/a~ 

W ~ 4ER/a2y 
(a = W/4) 

h ~ 3 ER/cr~ 

h - 3 ER/o 2, 

W ~ E R / ~  

W ~ 0 . 8  ER/~2y 

h = 0 . 6  ER/aZy w h e r e  h is depth of cut 

Upper transition elastoplastic-fully plastic 

a = 15 ER/a~ 
a - impression radius or equivalently 
c - -  2 5 E R / c r 2 y  

c = plastic zone radius around identation 

d = 8 E R / ( U T S )  2 (necking) 

h ~ ( 4 / 3 ) E R / a 2 y  

or 
h ~ (1/2rOER/a ~ 

h = RE/cr2y 

W ~ O. 15 ER/~r2y 

W ~ O. 1 ER/cr~ 

6cr critical depth of indentation; w width 
of shear zone 
n workhardening index 
-c ~ T0~ n 
f friction factor 

ratio of cracking force to the force required to produce 
plastic flow. The relevant lower and upper e values 
determine whether the flow is limited or extensive, i.e. 

for the lower transition is larger than e for the upper, 
so as ER/aZyh = l/a, this is the same as saying that 
cracking will occur if the force to crack is lower than 
the force to yield. This approach has been useful in 
consideration of  transitions in machining [37, 38]. 

Another interpretation is that ER/ff2y = gc/~y where 
6c is the critical opening displacement. This follows 
from writing R ~ ay6o. This particular meaning is 
employed in the crack opening displacement (COD) 
design curve [31, 39] (but note that in that code of  
practice ~c/~y ~- 2ER/aZy = 2(Klr 2 w i t h  a delib- 
erately built-in safety factor of two). Size transitions 
given by Equation 7 can be rewritten as: 

h ~ off6c/ey). (9) 

This may sometimes be a more convenient way of  
establishing ~, particularly at the upper transition. 
Hence even materials with large 6c can still behave in 
a globally elastic reversible fashion if h is big enough, 
but the large fie inevitably has to be accommodated in 
an extensive plastic field if h is small. Clearly the 
situation is changed in different crack geometries (dif- 
ferent ~): when ~ is small (at notch roots in tensile 
specimens) elastic fracture occurs in smaller speci- 
mens, other things being equal. 

There is a third value of ~ which determines when, 
in a given geometry, plastic fracture supervenes plastic 

flow. As illustrated schematically below, the three 
values of  ~ determine the behaviour when successive 
choices have to be made between (a) elastic to either 
fracture or elastoplastic flow; (b) elastoplastic flow to 
either elastoplastic fracture or plastic flow; and 
(c) plastic flow to either plastic fracture or unlimited 
plastic flow. 

elastic fracture 
elastic ~ (elastoplastic fracture 
deformation ( elastoplastic ) 

deformation ) ~ plastic fracture 

Xplastic flow ~ unlimited 
~-  plastic flow 

- l a rge  ~ i n t e r m e d i a t e  c~ = small 
lower upper third 
transition transition transition 

The trend in Fig. 11 is that the transitions are set by 
critical values of ER/a2yh = l/a, and that 1/~ is 
smallest for the lower transition, larger for the upper 
transition and (if it can be used) presumably largest 
for the third transition. Of course, it may be argued 
that the third transition is meaningless as all materials 
will eventually fracture as the level of  deformation is 
increased unless they have peculiar (time-dependent) 
flow properties. Information that the third transition 
does supply, though, is the level of  extensive large- 
strain plastic deformation which precedes fracture. 

Fig. 12 presents the transitions in terms of the 
diagram (Fig. 6c) used to explain the size effect in 
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Figure 12 Size effect in fracture incorporating lower, upper and 
third transitions. 

Section 2.1. There are now two stress levels for plastic 
flow, one EFG for initial yield and a second BCD for 
extensive yielding (which corresponds with unlimited 
plastic flow or collapse in a rigid-perfectly plastic 
solid). It is not obvious how to set the level of BCD in 
a workhardening solid. One point of view is to say that 
BCD corresponds with the least stress level at which 
the plastic zones reach an external boundary of the 
cracked body. The fracture stress curve M . . .  N will 
be given by the appropriate algebra for the fracture 
stress at all sizes, i.e. which expresses elastic fracture, 
elastoplastic fracture and plastic fracture. 

There are hardly any closed-form solutions for frac- 
ture loads covering the whole range of transitions. 
One example, however, relates to the adhesive fracture 
of a beam glued to a massive substrate (Figs. 13a and 
b) in which the possible plastic flow in the beam may 
be uncoupled from the fracture events along the glue 
line. (In cohesive fracture of monolithic solids, the 
separation of these events, and the interpretation of 
unloaded work areas after some propagation into 
components of plastic work, fracture work and 
residual elastic strain energy is formidable and the 
subject of much debate [40].) Let us define the 

"fracture stress" for this problem as (X/wh) where w is 
the width of the beam and 2h its depth, with X the 
equivalent end-load which, with a cantilever length a, 
gives the cracking moment M = Xa. Then, for elastic 
fracture [19] 

X/wh = [4RE(h/a)/3]~12(1/a 1/2) (10) 

and for elastoplastic fracture 

X/wh = (h/a)ay{l - (3/4){1 - RE/a2y(h/a)(a)] 2} 

(11) 
In both cases, for geometrically similar specimens 
where h/a is constant (assumed for simplicity) the 
fracture stress diminishes as the "size" (represented by 
a here) increases and the fracture stress curve falls 
from left to right in Fig. 12. 

It is clear that intersection points F and C in Fig. 12 
between the fracture stress and flow stress curves, 
correspond with Puttick's lower and upper 
transitions. The fracture stress curve is continuous 
through point F, with the portion NF being given by 
Equation 10 and portion FC by Equation 11. At point 
F, (X/wh) = 2RE/~ya by both relations. For rigid- 
perfectly plastic solids, the portion CM does not exist 
in theory as an unlimited rotation occurs to the left of 
point C. For practical work-hardening solids, CM 
does exist, if BC is considered (in this beam problem) 
simply as the stress level at which the whole beam 
depth is encompassed by plastic flow. The algebra for 
portion FC of the fracture stress curve may be viewed 
as the algebra for the elastic curve, but with a pro- 
gressively changing "enhanced" or "apparent" tough- 
ness, R*, given (for the beam problem) by R* = 
R(3 - ~2)2/4(3 - 2r where ~ defines the extent of 
the plastic zones in the beam [19]. It is likely that many 
elastoplastic cracking problems may, in general, be 
viewed in this way where the connexion between R* 
and R depends upon process zone size, accompanying 
irreversibilities inherent to propagation in a given 
geometry and so on; the result is clearly relevant to 
Andrews' multiplicative approach to elastoplastic 
fracture [41]. 

Hence, in broadest terms, the fracture stress will 
usually have the shape given in Fig. 12 and the follow- 
ing conclusions may then be drawn: 

1. As the stress is increased in a body where 
k > kQ, the portion FN of the fracture curve 

( a )  

t 
Y 

epo y metal beam 

w 

I s 
T 

(b) 

~= ( y/ ~h) o-y 
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Figure 13 (a) Peeling of an elastoplastic metal-epoxy joint by an end couple and (b) stress distribution across the beam depth showing the 
regions of elastic and plastic bending. 
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is intersected first and hence elastic fracture 
ensues. 

2. For a body in which 2p < 2 < 2 0 , the initial 
yielding boundary is intersected first, followed by the 
fracture curve between C and F. For bodies with 
2 H < 2 < 2p, initial yielding is followed by extensive 
yielding and eventual fracture on the MC boundary. 

3. If 2H exists, and h < 2n it seems that unlimited 
flow can take place with no fracture at all. The 
position of H would be such that the fracture curve 
NFCM would be asymptotic to a vertical line 
through H. 

The fracture stress required for propagation, and 
the stresses associated with yielding, may change as 
propagation ensues which means the boundaries may 
change and the events may change. For example, 
plastic flow may occur after some elastic fracture 
propagation in ligaments in the path of the crack, 
which obviously decrease in size as cracking progresses. 
Questions of non-proportional scaling, crack stability, 
rate, temperature and environment all come into play 
in the full interpretation of events in Fig. 12 and 
clearly, alteration of any one variable in the lumped 
parameter c~ER/a2yh may put the deformation into 
different regions of Figs. 8 or 11. 

Some numerical solutions for some transitions are 
contained in the Appendix. In all cases the behaviour 
may be expressed in terms of  versions of Equation 7, 
i.e. h > o~ER/a2y. 

4. Deformation transitions and design 
We have seen that a body, when loaded, may behave 
merely elastically; may crack elastically; may behave 
elastoplastically, may crack in the elastoplastic 
regime; may experience widespread plastic flow; or 
may fracture after extensive remote flow. Which (if 
any) of these various possibilities constitutes "failure" 
to an engineering designer? The answer clearly 
depends upon the purpose of  the component or struc- 
ture being designed, its size and shape, the loading, 
and the material from which it is made. 

Most traditional design relates to the elastic range 
of deformation with, usually, high structural loading 
coefficients (i.e. comparatively high loadings over the 
extent of the body) using stiff materials: in contrast 
tents, pneumatic structures and the like, and many 
natural structures (plants and animals) have low struc- 
tural loading coefficients and low stiffness materials. 
Traditional design is based on a safety-factored yield 
stress, employing "ductile" materials. It is an accept- 
able design philosophy, particularly in relatively 
small, well-manufactured components and structures, 
and relates to keeping the working stresses below line 
EF in the HP size range of  Fig. 12 for monotonic 
loadings. If the article is defective (cracks, bad welds, 
and so on) unexpected failures can occur. But 
deformation transitions, produced by increased size of  
components and structures, led to brittle fractures 
(FN line in Fig. 12) in even well-manufactured bodies, 
and hence to the birth of  modern elastic fracture 
mechanics in order to explain these unexpected fail- 
ures and to design against them. Furthermore, the 
ability to perform "strength-of-materials" elastic cal- 

culations for cracked bodies (for that is what LEFM 
is all about as far as a designer is concerned) has 
permitted the use, in some applications, of high 
strength materials whose K~/ay ratios are relatively 
much lower than the traditional ductile solids of 
engineering design; use of these materials implies 
appropriate crack inspection procedures. Of course, 
an application of fracture mechanics principles is 
central to design with brittle materials such as glasses 
and ceramics whose Kc/ay ratios are very low indeed. 

Design rules for material/geometry/size com- 
binations in the region from the origin to P, and in the 
region beyond Q, in Fig. 12, seem to have been 
covered therefore, i.e. yielding or plastic collapse in 
the first case and reversible elastic fracture in the 
other. What of the region PQ in between, in which 
elastoplastic fracture is possible, i.e. cracking after 
only limited irreversible flow? This is difficult: if 
plasticity is not very extensive (just to the left of point 
Q, say) the J-integral approach [42] may be used; 
alternatively, the COD design curve may be used [39]. 
However, if design concerns the region of  the diagram 
just to the right of P, the solution is not clear and is the 
subject of  current research. 

One approach to the problem is to boundthe answer 
by LEFM and limit analysis. Crack initiation may 
precede overall yielding or vice versa. Hence LEFM 
and limit analysis will provide either upper or lower 
bounds depending on the circumstances, i.e. in Fig. 12 
line MCF N  or line BCD may be reached first, depend- 
ing on where on the abscissa the particular material/ 
size/cracked geometry combination lies. Ruiz and 
Corran [43] draw the analogy of the design of  a strut 
with the safe design of a structure containing a flaw: 
with a strut, the possibilities of either Euler crippling 
or plastic squashing have to be considered; design 
against the failure of  a structure made of material with 
intermediate-to-high Kc/% and possessing flaws needs 
consideration of fracture in the elastic field, on the one 
hand, or general yielding on the other. That the poss- 
ibility of plastic flow may be as important (or more 
important) a consideration as elastic fracture in these 
circumstances is borne out by the observations of 
Soete in 1977 [44] who noted that the safety of struc- 
tures built with ordinary commercial steels depends 
more on their plastic properties than on their fracture 
toughness (i.e. extensive yielding nearly always 
precedes fracture). Furthermore, Ruiz [45] showed 
that ductile crack growth in cracked cylindrical shells 
can, in fact, be predicted by limit analysis alone, i.e. 
the predicted pressure to cause widespread yielding in 
the presence of longitudinal notches or through- 
thickness slits agrees with reported experimental 
"failure" pressures in pipelines and boilers made of  
medium-to-high Kc/~ry materials. LEFM and related 
analyses were not appropriate. 

It is clear that deformation transitions are central to 
the use of  extremal elastic and fully plastic solutions 
for the design of structures made from materials 
possessing high Ko/ay ratios, and a l sofor  the assess- 
ment of defects in such structures, i.e. what cracks 
may be tolerated vis~ vis realistic levels of  inspection. 
Fig. 14 is taken from Corran et al. [46] and illustrates 
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the competition between fracture and flow for a centre 
cracked panel. Elastic fracture occurs when ~r(rca)J/2 = 
Kc, where ~ ~ X / B ( W  - 2a) where Wis the width of  
the plate. Assuming the material to be rigid-perfectly 
plastic with flow stress ~ry, plastic collapse in plane 
stress occurs when X = a y B ( W  - 2a). These two 
relations for X (normalized by GyBW) are shown in 
Fig. 14b, the former for two values of (Kc/~ry(rcW)~/2). 

The intersection between the "ductile failure" line and 
the "brittle fracture" curve corresponds to the tran- 
sition between the two modes of  failure, governed by 
ductile (limit analysis) behaviour to the left of  the 
intersection and by brittle (LEFM) behaviour to the 
right. Note the similarity of  the diagram to Fig. 12. 
Thus, in Fig. 14c, a plate with a small defect, at A, will 
first yield as the load reaches XA- AS the crack grows, 
reducing the net cross-sectional area, the applied load 
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Figure 14 Failure of a plate with a central crack, (a) general con- 
figuration; (b) failure analysis diagram; (c) ductile/brittle transition; 
(d) ductile/brittle/ductile transition; (e) growth of crack into tran- 
sitional region (after Corran et al. [46]). 

drops until at C, the crack grows in a brittle (i.e. 
elastic) manner, a transition that may be repeated if 
the notch toughness of  the material is sufficiently high 
as in Fig. 14d. In practice, Ko corresponds to crack 
initiation and, depending on the loading condition, 
strain rate and plastic constraint, failure within the 
brittle region C~C2 of Fig. 14d may take place as 
illustrated in Fig. 14e: a crack of initial length ( a / W ) o  
starts growing at D, along the path DE in the tran- 
sitional region until at E fully plastic behaviour sets in. 
The various intersection points correspond with 
Puttick's c~ equalling (1/rt) in value, that is, when 
a = Kc/Oza) 1/2 = ay, a = (1/rr)(Kc/ay) 2. 

The investigations of Ruiz and co-workers [46] into 
the elastoplastic behaviour of compact tension speci- 
mens of  maraging steel (Kc/ay "~ 0.1 m ~/2) and poly- 
carbonate (gc/O'y ~ 0.07m ~/2) show that although 
crack initiation is predicted by LEFM, the maximum 
load is predicted by limit analysis; and that in 
specimens with relatively large cracks, in which sub- 
stantial plastic deformation precedes cracks initiation, 
the two approaches coincide. (To account for practical 



strain hardening in such analyses it is customary to use 
(O'uT s + O'y)/2 or some such in place of  ay). Corran 
et al. [46] applied the results to model flawed cylindri- 
cal pressure vessels made from polycarbonate. They 
obtained excellent agreement between theory and 
e x p e r i m e n t -  pressure against crack growth dia- 
grams following the shape of Fig. 14e when failure was 
by widespread yielding which occurred with small 
vessels; of  note, a set of  large model vessels failed in a 
brittle manner, which accords with the size effect 
shown in Fig. 12. 

Of course, extremal solutions provide only indepen- 
dent estimates for the two limits to the initiation of  
"failure", i.e. brittle fracture or widespreading yield- 
ing. (Fracture subsequent to widespread yielding, i.e. 
the third transition of  Section 3, is not usually con- 
sidered in this type of structural calculation). 
Bounding solutions give no indication of the tran- 
sitional behaviour, and (when formulated in terms of  
rigid-perfectly-plastic collapse) do not account for 
workhardening deformation. Dowling and Townley 
[47] proposed to combine the two extremal solutions, 
establishing an interaction diagram, which leads to the 
CEGB "two-criteria" approach for design (sometimes 
called the R-6 failure assessment procedure). Plasticity 
is that associated with a Dugdale zone extending 
ahead of  the crack tip, and (although not actually 
presented this way originally) degrees of elastoplastic 
fracture may be visualized to arise from what pro- 
portion of a remaining ligament ahead of the crack is 
taken up by the Dugdale zone. The diagram has axes 
of 

Ko[a, X, Y(a/D)] 
K , =  

K,c 

and 

X 
Sr -- (12) xc 

for the ordinate and abscissa, respectively. For  a given 
crack geometry, and a given loading condition, the 
diagram identifies how close the situation is to either 
elastic fracture, elastoplastic fracture or plastic 
collapse. The diagram is a useful means, therefore, of  
assessing the safety margin of  a flawed structure. 
Developments of the R-6 diagram permit thermal and 
residual stresses, and slow crack growth to be incor- 
porated. There is some debate about the detail of the 
diagram (see, for example, [46]) and how the separate 
fracture and flow events are blended-in. 

Owing to the closed-form solution of the elasto- 
plastic glued beam problem mentioned in Section 3, it 
is possible to construct an exact elastoplastic inter- 
action diagram for this particular problem. For  
elastoplastic deformation of  the beam coupled with 
fracture along the glue line (i.e. fracture in the tran- 
sition region between elastic fracture and plastic 
collapse), we have [19] M 2 = (REIw/2)(3 - ~2)2/(3 - 
2~). The moment when the beam just remains com- 
pletely elastic, i.e. 4 = 1 is M~ = 2REIw. For the 
purpose of the diagram, the ordinate is MIMe] and we 
see that (M/M~) 2 = (3 - ~2)2/4(3 -- 2~). This 
expression must be transposed so that the function of  

h >3RE/# 2 ~ / /  
elastic fracture / 

/ elastoptashc .B 
/ fracture / ' ~  

l 0 ~ h <~RE/~y 2 

�9 i / / fracture 

9d 

~ ........ g ....... iO . . . .  

M~ M col&ps e 

Figure 15 Exact "R6" interaction diagram for glued cantilever 
beam problem. 

4 becomes a function of M/Mco,,pse. Now 
Mcollapse = wh2ay, and from [19] an alternative 
expression for Melpj is w h 2 a y ( 3 -  ~2)/3. Thus 
M/Mco,ap~e = (3 - 42)/3 and 42 = 3(1 - M/Mco,,pse). 
Substituting back for 4, and calling M/Me~ = y and 
M/Mcollapse = x, we have y2 = 9x2/4{3 _ 213(1 - 
x)] ~/2 } as the equation of the interaction diagram. Fig. 
15 gives the plot. Note that MIMer = 1 until 
M/M~o,,,,o = 2/3 (for rectangular beams). The 
interaction curve corresponds with ~ changing as 
shown. The bounding radial lines for 4 = 0 and 

= 1 give Puttick's lower and upper transitions in 
this problem. 

Appendix 
Calculations for the ~ values in h ~ ~(ER/aEy) which 
determine transitions are given as follows. Values of 
in Table I were obtained in these sorts of ways. 

A1. S p o t  w e l d s  
Fig. 5 shows Smith's comparison between experiment 
and theory [48]. Failure occurs either by cracking 
across the weld junction (at low loads) or by pulling 
out a plug of ductile metal in shear at higher loads. 
Interfacial fracture occurs at small weld diameter-to- 
sheet thickness (d/B) ratios, and vice versa for plug 
formation. For  small (d/B) and low loads, defor- 
mations are small, the initial geometry is maintained, 
and elastic fracture may be modelled as a sharp 
circular neck surrounding the embrittled weld nugget 
and heat-affected zone. The stress intensity factor 
formula employed was 

K = 0.8XB/d 5/2 (A1) 

which is an appropriate simplification of  a more com- 
plicated expression. Hence 

Xc,,c k = 1.25 KcdS/2/B (A2) 

For "failure" by shear around the two circumferential 
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Figure A1 (a) Axial splitting a DCB specimen by compression and (b) compression results for a range of specimen sizes showing yielding 
of small samples and cracking of large ones (both after Kendall [12]). 

areas (above and below the weld) we have 

fli~y ie, d = 20z/a)B'cy (A3) 

where Zy was taken as the flow stress. 
The critical weld size at the transition is given when 

Z~crack = f l (y ie ld ,  i . e .  f r o m  

or  

V.l d--- ~ = 0.16 (A4) 
Lay J 

B = 0.16 _--27- (A5) 
G y  

( t ak ing  2-Cy = fly). Notice that the length dimension 
for Puttick's transition expression is a combination of 
B and d together, not one simple size parameter. 

Fig. 5 gives Smith's comparison between the analy- 
sis and data of Rivett [49] for spot welds of 1.18 mm 
thick cold-rolled mild steel. The transition weld dia- 
meter was predicted to be 4.65 mm which, together 
with the predicted transition load of  5.1 kN, clearly 
separates the elastic and elastoplastic fracture modes. 

A2. C o m m i n u t i o n  
Kendall [12] used a "buckling" model of the DCB 
testpiece (Fig. Ala). The axial cracking force, X, is 
related to the geometry of  the beam and mechanical 
properties of  the solid by 

Xcraok = [B/(1 -- w/d)](2ERd/3) '/2 (A6) 

The axial load to cause yielding is given by 

X y i e l d  = ayBw (A7) 
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where w is the current width of an originally sharp 
edge. 

The lower transition is given when X~rac k = Xyield, 
i.e. 

(1 -- w/d)w = (2ERd/3~rZy) '/2 (AS) 

For  different (w, d) size combinations, this relation 
gives the conditions for a lower transition. 

The value of w depends on the applied X and the 
plastic flow properties given by fly. If  w is eliminated, 
X~rac k is seen to be governed by the following:~ 
quadratic: 

(X/B)Z(1/%d) - (X/B) + (2ERd/3) '/2 = 0 (A9) 

The solution appears in two parts in Fig. Alb.  For  
large d, the first term may be neglected and Xorack 
depends on d 1/2, but as the particle size is reduced 
towards a critical value given by 

d - -  32ER/3cr2r (A10) 

(when in the quadratic solution "(b 2 - 4ae) ~/2 = 0" i.e. 
the cracking force rises very rapidly. Eventually it 
exceeds the yield stress (however high this may be) and 
below the critical size, cracking is impossible and flow 
occurs instead. We see that e = 32/3. Fig. A lb  
includes Kendall's model results on polystyrene for 
which E = 2.8 GPa, O-y = 80MPa, R ,,~ 960 J m  -2. 

The critical d at transitions is about 4.5 mm from the 
theory; the experimental transition is some 3.6mm. 
Given thc simplifications in the analysis the agreement 
is very good. 

A3. Notch bend tests 
As is well-known from the Charpy test, change in 
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Figure A2 Charpy notched bar fracture of  silicon iron: notch root 
plastic zone length at fracture for values of  ratio fracture load/ 
general yield load < 0.64. Line of best fit (slope 0.15); - -  
line through origin of  slope 0.2 (data from Griffiths and Oates [50], 
after Puttick [34]. 

temperature is a powerful means of producing a tran- 
sition, as it alters R and o-y in steels (and would alter 
E as well in many polymers around room tem- 
perature). Notch bend tests on silicon iron by Griffiths 
and Oates [50] provide evidence of  the correlation 
between fracture transitions and the ER/a2y parameter. 
The fracture load, general yield load and the length of  
the plastic zone at the notch root (as a function of  
applied load/yield load) were measured at a variety of 
temperatures. 

At 40 ~ C, for example, the plastic zone was about 
1 mm in extent and the (temperature-dependent) 
mechanical properties of  silicon iron are: E = 
200 GPa, R = 5 kJ m 2 and O-y --- 470 MPa. We have 
ER/ff2y = 200 = 109 x 5 x 1 0 3 / ( 4 7 0  x 106) 2 = 4 .5  x 

10-3m. Hence with a plastic zone size (h) of  1 mm, c~ 
for that temperature is c~ = 10 3 /4 .5  X 10 -3  = 0.2. 
The overall results in Fig. A2 show that the data 
follow a straight line with slope (~) through the origin 
of about 0.2. The line of  best fit of  the experimental 
data is about 0.15. 

A4. Ball indentations 
Fig. 3a shows (upper) transitions between, elasto- 
plastic flow in ball indentation and elastoplastic frac- 
ture caused by change in temperature. The data may 
be re-interpreted in terms of  the relationship between 
the critical radius, ro, of  the indentation plastic zone at 
which at least one radial fracture was observed and 
(ER/a2y). As in Section A3, ER and Cry change with 

3 

~" 2 

1 2 3 
Et? /cr/ (mm} 

Figure A3 Critical radius of  the identation plastic zone as a function 
of (ER/aZy). (cf. Fig. 3a) Line of  best fit gives slope of  30 (after 
Puttick et al,. [51]). 

temperature, and Fig. A3 shows that r o ~ 30 (ER/~Zy); 
Puttick et al. [51], on the basis of elastoplastic analysis 
of ball indentation employing a pressure-dependent 
yield criterion for polymers, gave a theoretical value 
for c~ of 25. 

We conclude by noting that different sized balls 
produce different degrees of deformation and hence 
change the transition temperature: remember that 
Charpy transitions, for example, are also altered by 
the geometry of the notch (e.g. keyhole notches and so 
o n ) ,  

Other correlations of  size and ER/a2y relating to, for 
example, optical transmittance loss caused by erosion 
and so on may be found in Atkins and Mai [19]. 
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